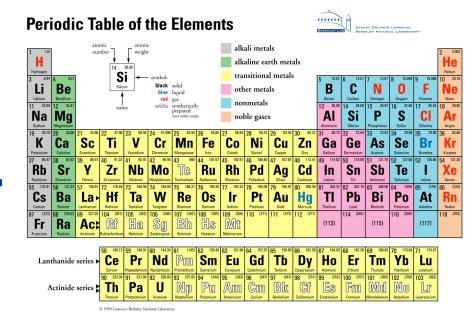


X-ray Emission Spectroscopy of 5f and Environmental Materials

David K. Shuh


Actinide Chemistry Group

Chemical Sciences Division

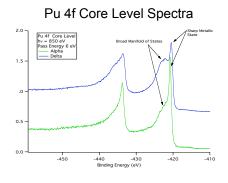
Glenn T. Seaborg Center

Berkeley Laboratory

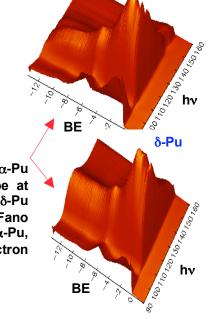
20 October 2004

Actinide Science and Interface Science with Tunable Soft X-rays

α-Pu


Understand the complex chemistry and physics of the actinides resulting from 5*f* electron interactions

Surface/interface science, both traditional and modern; photoelectron, XAS, x-ray emission, [polarization]


Soft x-rays probe the electronic structure of bonding orbitals (5*d*-5*f* transition ~100 eV)

Direct probe of light elements B, C, O, N, Al, Si plus others

Safety and sample preparation

Fano-like line shapes for both. α -Pu shows structure in CIS line shape at Fermi edge while δ -Pu does not. δ -Pu spectrum shows greater Fano symmetry and larger q value than α -Pu, consistent with greater electron localization in δ -Pu.

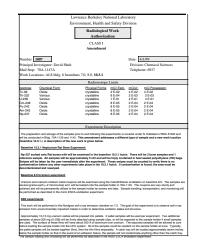
- J. Terry et al., Surf. Sci. **499**, 141 (2002)
- J. G. Tobin et al., Phys. Rev. B 68, 155109 (2003)
- K. T. Moore et al., Phys. Rev. Lett. 90, 196064 (2003)

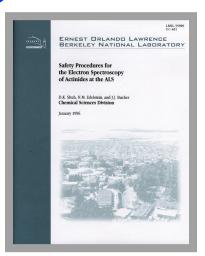
Several MRS and other Proceedings

Spurred other work

Use of Radioactive Materials in the soft X-rays Region at the ALS

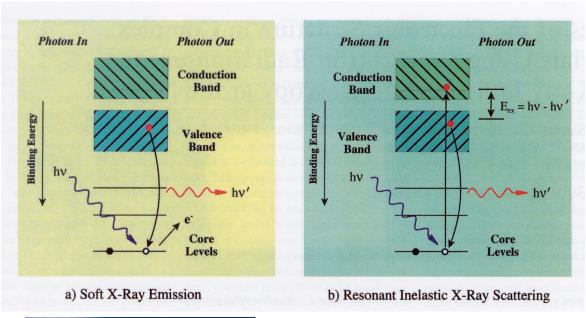
LBNL Tradition of Handling Radioactive Materials Safely

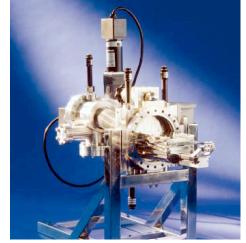

Partnership with LBNL Environment, Health & Safety Graded Approach to Safety


Handling Radioactive Materials at the ALS

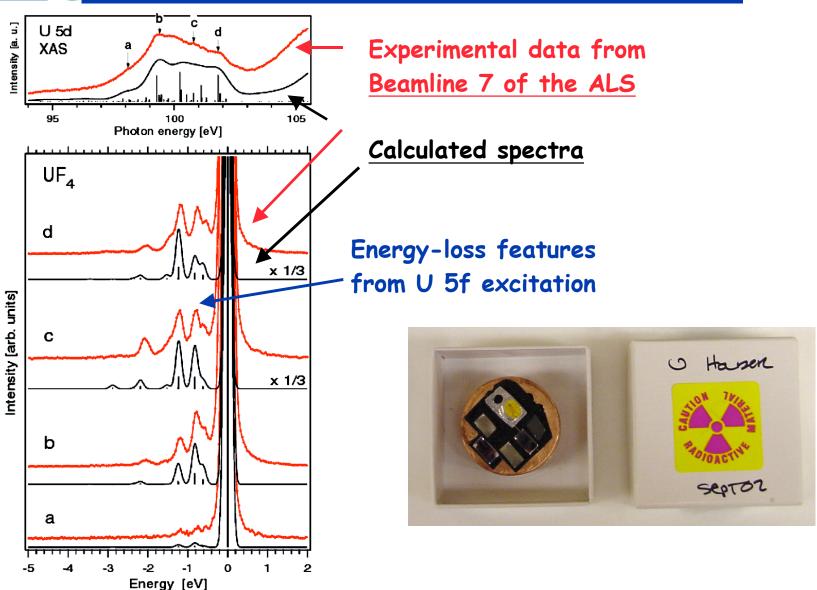
ALS Scientific Advisory Committee (2003)

Actinide Experiments at the ALS - 3 Categories

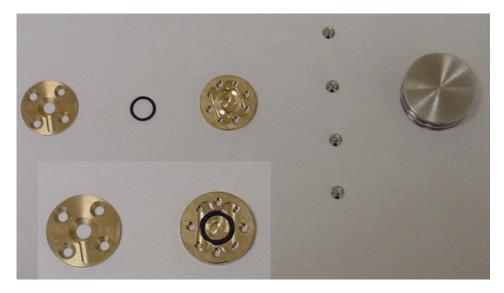




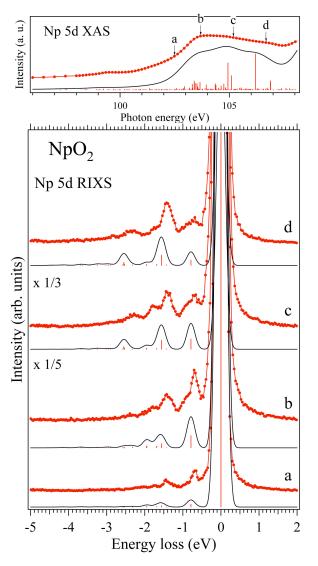
Photon in, Photon out

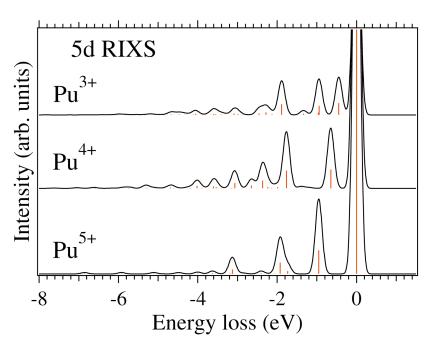


Uranium RIXS



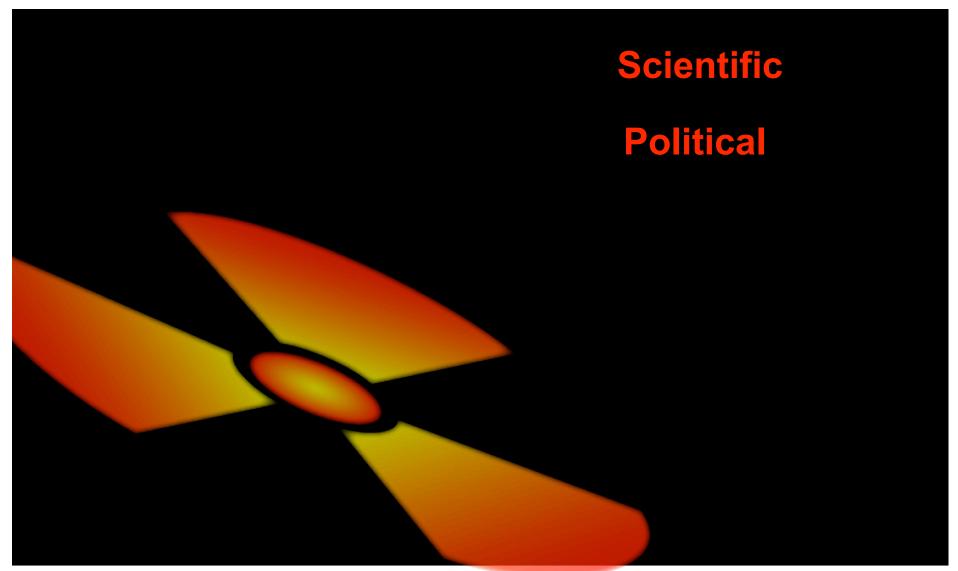
Special XES Sample Holders





X-ray Emission: RIXS From NpO₂ and Calculated for Pu

Pu Multiplet Calculation at hv= 109.6 eV

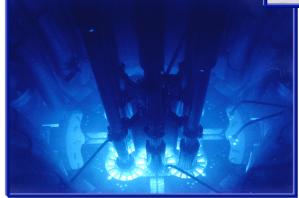


S. M. Butorin et al. (unpublished)

The Nuclear Waste Problem

Sources of Nuclear Waste

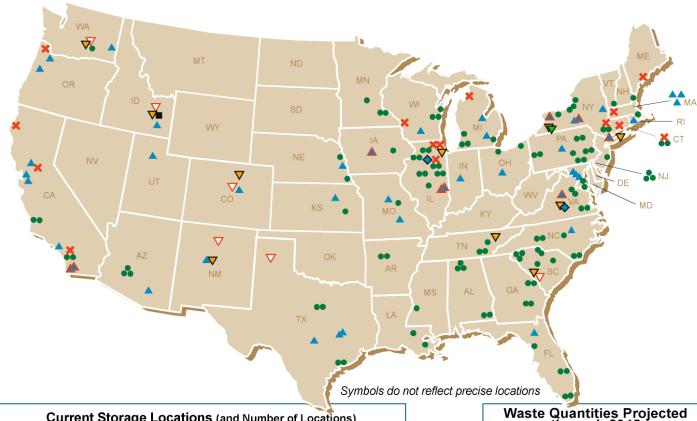
Defense Complex Clean-Up



Commercial Spent Nuclear Fuel

Disposition of Surplus Weapons Materials

Support of Nonproliferation Initiatives, e.g. Disposal of DOE and Foreign Research Reactor Spent Fuel



Disposition of Naval Reactor Spent Nuclear Fuel

U.S. Storage Locations and Waste Quantities

Current Storage Locations (and Number of Locations)

Commercial Reactors (72 sites in 33 states), including: - 104 operating reactors, and

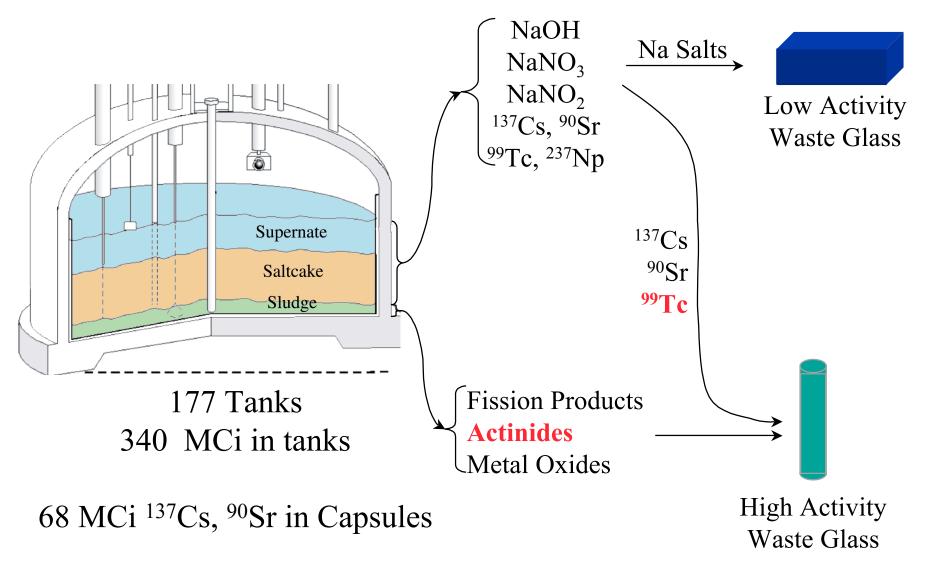
- X 14 shutdown reactors with SNF on site
- Commercial SNF Pool Storage (Away-From-Reactor) (2)
- Naval Reactor Fuel (1)

Research Reactors (41 sites in 26 states), including:

- 36 operating reactors, and

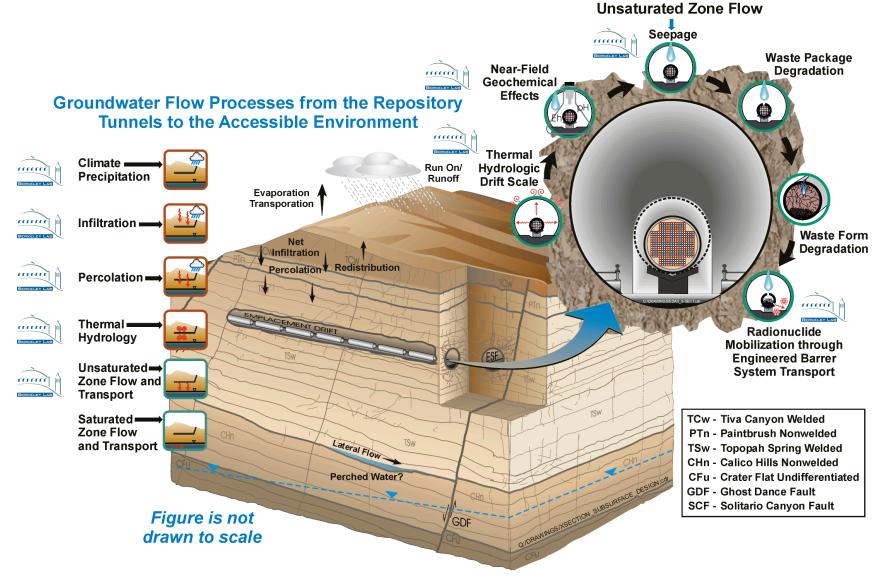
- 9 shutdown reactors with SNF on site
- **▼** DOE-Owned SNF and HLW (10)
- ▼ Commercial HLW (1)
- **▽** Surplus Plutonium (6)

through 2045 (in Metric Tons, except for HLW)


Commercial SNF up to 105,000 **DOE-Owned SNF** 2,500 including: Naval Reactor Fuel 65 Foreign Research Fuel 16

Surplus Plutonium 50 **HLW Glass (canisters)** ~22,000

Hanford Tank Farm Process Schematic



Focus of Current Process Studies

Science of Nuclear Wasteforms

Ceramic materials - pyrochlores

Speciation (oxidation state, structure, form)
Radioactive element loading

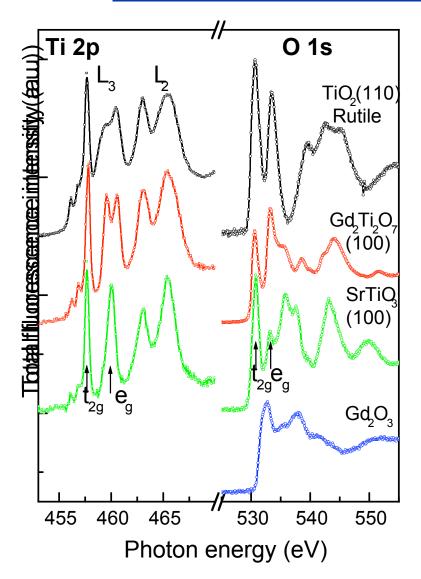
Durability and radiation damage

Basis for models and risk assessments

Non-radiaoctive materials at the ALS

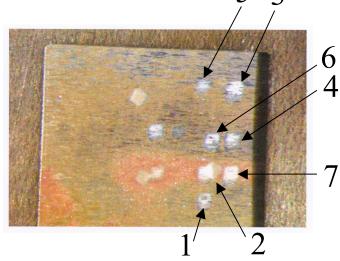
Glasses - mostly borosilicate

Same issues as above

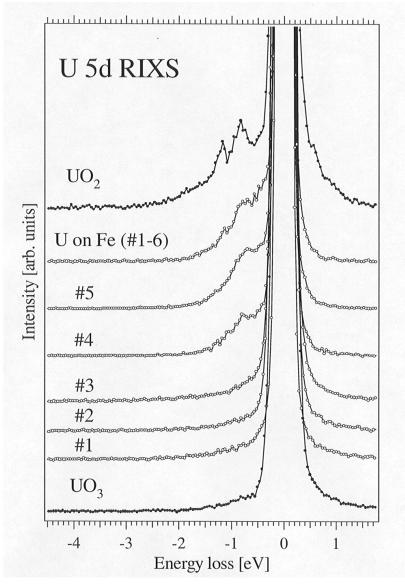

Uranium materials at the ALS

Comparison of the Ti 2p and O 1s NEXAFS from TiO₂, Gd₂Ti₂O₇, SrTiO₃, and Gd₂O₃

- The crystal field strength $(10Dq=e_g-t_{2g})$ suggests the Ti^{4+} ions in $Gd_2Ti_2O_7$ occupy O_h site symmetry.
- The splitting of e_g states further shows that Ti in $Gd_2Ti_2O_7$ occupies distorted O_h site symmetry.



Interaction of Actinides with Metal Containers Model System: U(VI) Adsorbed on Fe Foils


RIXS spectra at hv=101 eV

Contacted for 17 days with 500 ppb U(VI) spiked Allard groundwater 5 3

Reduction observed in locations #4-6

ALS BL 7.0 Butorin, Kvashnina, Soroka, Werme, Albinson, Ollila, Nordgren, Guo, Shuh

Specialized Trivalent Separation Ligands (JAERI/LBNL)

Separation of actinide (III) from lanthanide (III)

One of the most important fundamental technologies

Difficult because the behavior of the ions is similar

Preferential complexation of actinides by soft ligands (ligands that lead to covalent bonding with the metal ion)

Soft donor ligands have been optimized empirically

MOLECULAR DESIGN!

Polydentate Aromatic Nitrogen Soft Donor Ligands

pyridine imidazole derivatives (-NO₂, -CH₃)

 $(-NO_2, -CH_3)$

phthalocyanine derivatives (-NO₂, -CH₃)

Experimental Program

60 144.24		63 151.96	
Nd		Eu	
Neodymium		Europium	
92 238.03	94 (244)	95 (243)	96 (247)
U	Pu	Am	Cm
Uranium	Plutonium	Americium	Curium

Chemical Separation Factors (lab experiments)

• NEXAFS - C, N, O K -edges BLs - 6.3.2, 6.3.1

- lanthanide $M_{IV,V}$ -edges

• XES/RIXS - N K -edge & lanthanide $M_{IV,V}$ -edges BL-8 - Actinide $O_{IV,V}$ -edges (5d_{3/2,5/2}) BLs-7, 11

Expertise and Capability: Selective Extraction of the Cs⁺ Ion

BOBCalixC6

This molecule features two crown ether loops (red oxygen atoms) on a calixarene frame (in blue). Inside either loop, the Cs⁺ ion snugly fits into a cavity bounded on either side by aromatic groups of the calixarene

Cst

Solvent extraction technology using this molecule chosen for removal of ¹³⁷Cs⁺ from 31 million gallons of highly radioactive salt waste at Savannah River

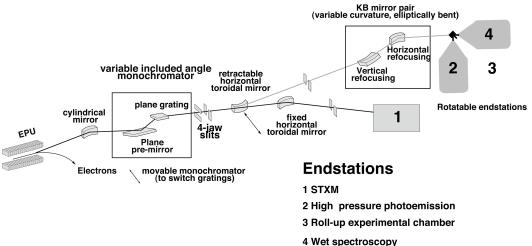
Processing requirements

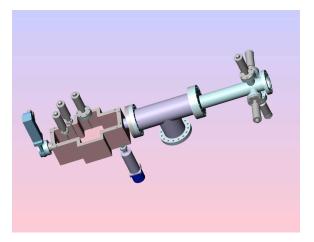
Remove 99.9975% of the cesium from waste containing an average of only 15 ppm of cesium.

Calix[4]arene-bis(tert-octylbenzo-crown-6)
"BOBCalixC6"

(As complexed with Cs⁺ ion)

B. Moyer et al. ORNL


LAWRENCE BERKELEY NATIONAL LABORATORY



ALS-MES Beamline 11.0.2

Summary: A 5f Materials Perspective

XES and RIXS Approaches with Actinides (ANs)

Fundamental information on actinide materials with the need of in-situ sample preparation - <u>sensitive</u>

Electronic and structural characteristics

Versatile (solids, liquids, interface science, clever stuff)

Filled in the soft x-ray scientific gap for ANs (Pu too!)

General Fluorescence Detection Instrumentation and Capabilities:

Important for 5f materials that have not be studied extensively Particularly for oxide materials; enables sample environments

Specialized detectors for soft x-rays (normal & high resolution) XES, general solid state, and novel instrumentation Scanning <u>Transmission</u> X-ray Microscopy (STXM) to S<u>F</u>XM

State-of-the-art Beamlines: BL-11.02 = Intensity, Spot size, Res., P

Acknowledgments

- J. Bucher
- J. Denlinger
- J. Guo
- E. M. Gullikson
- D. Lindle (UNLV)
- P. Nachimuthu (UNLV)
- H. Nilsson (SKB)
- R. Perera

Uppsala University

- S. Butorin
- K. Kvashnina
- J. Nordgren
- I. L. Soroka
- L. Werme (SKB)
- Y. Albinsson (Chalmers U)
- K. Ollila (VTT)

JAERI

- T. Yaita
- T. Kimura
- K. Yoshihiro
- Y. Okamoto
- S. Suzuki
- H. Shiwaku
- Y. Muramatsu

Pacific Northwest National Laboratory

Operated by Battelle for the U.S. Department of Energy

- J.G. Darab
- M. H. Engelhard
- J. P. Icenhower
- B. P. McGrail
- V. Shutthanandan
- S. Thevuthasan
- W. Weber
- * This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division and Chemical Sciences, Geosciences, and Biosciences Division of the U.S. Department of Energy under Contract Number DE-AC03-76SF00098 at LBNL.
- This work was also supported by U.S. Department of the Energy under Contract Nevada-DOE-EPSCoR-LBNL Partnership.